Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure.

نویسندگان

  • Federica Barbagallo
  • Bing Xu
  • Gopireddy R Reddy
  • Toni West
  • Qingtong Wang
  • Qin Fu
  • Minghui Li
  • Qian Shi
  • Kenneth S Ginsburg
  • William Ferrier
  • Andrea M Isidori
  • Fabio Naro
  • Hemal H Patel
  • Julie Bossuyt
  • Donald Bers
  • Yang K Xiang
چکیده

RATIONALE In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. OBJECTIVE This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. METHODS AND RESULTS We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced β2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of β2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. CONCLUSIONS In hypertrophic rabbit myocytes, selectively enhanced β2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine β2 adrenergic receptor signaling and restore myocyte contractility in response to β adrenergic stimulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice.

Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 280...

متن کامل

FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility

Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie, which detects compartmentalized cAMP with unprecedented accuracy. CUTie, targeted to specific mul...

متن کامل

PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure

he type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca 2 ) release channel required for skeletal muscle excitation– contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation...

متن کامل

Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a.

beta-Adrenergic receptor (betaAR) signaling, which elevates intracellular cAMP and enhances cardiac contractility, is severely impaired in the failing heart. Protein kinase A (PKA) is activated by cAMP, but the long-term physiological effect of PKA activation on cardiac function is unclear. To investigate the consequences of chronic cardiac PKA activation in the absence of upstream events assoc...

متن کامل

PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle

The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation-contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 119 8  شماره 

صفحات  -

تاریخ انتشار 2016